
qsketchmetric
Release 1.7.1

Franciszek Łajszczak

Mar 19, 2024

TABLE OF CONTENTS:

1 Getting started 3
1.1 Why QSketchMetric? . 3
1.2 What is DXF file? . 3
1.3 DXF file versions supported . 3
1.4 How the documentation is organized? . 3

2 Quick install guide 5
2.1 Supported Python Versions . 5
2.2 Basic Installation . 5

3 Tutorials 7
3.1 Tutorial - Rendering your first parametric DXF file . 7
3.2 Tutorial - Manual parametrizing your first DXF file . 9
3.3 Tutorial - Semi-automatic parametrization of a DXF file . 13
3.4 Tutorial - Validation your first DXF file . 15
3.5 Tutorial - Rendering a point . 18
3.6 Tutorial - Rendering a custom line style . 20

4 How-to guides 23
4.1 Manual parametrization . 23
4.2 Semi-automatic parametrization . 26
4.3 Validating a parametrized DXF file . 28
4.4 Rendering a DXF file . 30

5 Explanation 33
5.1 Debug report . 33
5.2 MTEXT . 35
5.3 VIRTUAL_LAYER . 36

6 Reference 39
6.1 Renderer . 39
6.2 Semi-automatic parametrization . 40

7 Getting help 41

8 How to contribute 43
8.1 Issues / Feature requests . 43
8.2 Make changes . 43
8.3 Tests . 44
8.4 Commit your update . 44
8.5 Pull request . 44

i

8.6 Your PR is merged! . 44

Python Module Index 45

Index 47

ii

qsketchmetric, Release 1.7.1

gitp.. qsketchmetric documentation master file, created by
sphinx-quickstart on Sun Aug 20 14:22:12 2023. You can adapt this file completely to your liking, but it should
at least contain the root toctree directive.

Python 2D parametric DXF rendering engine.

Tip:
The name QSketchMetric comes from the combination of three words:

• QCAD (reference to the CAD software)

• Sketch (reference to the process of DXF file parametrization)

• Parametric (reference to the parametric nature of the rendering engine)

TABLE OF CONTENTS: 1

https://github.com/MadScrewdriver/qsketchmetric/actions/workflows/tests.yml
https://qsketchmetric.readthedocs.io/en/latest/?badge=latest
https://codecov.io/gh/MadScrewdriver/qsketchmetric
https://opensource.org/licenses/MIT
https://pypi.org/project/qsketchmetric/
https://www.python.org/downloads/release/python-3114/
http://mypy-lang.org/

qsketchmetric, Release 1.7.1

2 TABLE OF CONTENTS:

CHAPTER

ONE

GETTING STARTED

QSketchMetric is a tool designed to interpret parametric DXF files and render them. Parametrizing of a DXF file
happens through QCAD Professional’s CAD software, which is a commercial software. The parametrized DXF file
is then interpreted by QSketchMetric and rendered according to the mathematical expressions.

1.1 Why QSketchMetric?

QSketchMetric was born out of a genuine need. There was an evident demand for a Python tool capable of generating
DXF 2D drawings based on parametric descriptions, rendering them according to provided variables. This tool enables
a seamless workflow during the production process, particularly beneficial for devices like plotters.
Typical Use Cases

Consider a box’s cutting layout: with qsketchmetric, it can be dynamically rendered to adapt based on its
desired size.

1.2 What is DXF file?

DXF (Drawing Interchange Format, or Drawing Exchange Format) is a CAD data file format developed by Autodesk
for enabling data interoperability between AutoCAD and other programs.

1.3 DXF file versions supported

QSketchMetric supports DXF files newer or equal to R13 (Introduced in 1994).

1.4 How the documentation is organized?

Documentation follows diataxis structure. It is divided into the following parts:

• Tutorials take you by the hand through a series of steps to start using QSketchMetric. Start here if you’re new to
QSketchMetric.

• How-to guides are recipes. They guide you through the steps involved in addressing key problems and use-cases.
They are more advanced than tutorials and assume some knowledge of how QSketchMetric works.

• Explanation guides discuss key topics and concepts of QSketchMetric.

• Reference guides contain technical reference for all aspects of QSketchMetric’s machinery. They describe how
it works but assume that you have a basic understanding of key concepts.

3

https://diataxis.fr

qsketchmetric, Release 1.7.1

4 Chapter 1. Getting started

CHAPTER

TWO

QUICK INSTALL GUIDE

2.1 Supported Python Versions

QSketchMetric requires at least Python 3.9

2.2 Basic Installation

The most common case is the installation by pip:

pip install qsketchmetric

5

qsketchmetric, Release 1.7.1

6 Chapter 2. Quick install guide

CHAPTER

THREE

TUTORIALS

Tutorials take you by the hand through a series of steps to start using QSketchMetric. Start here if you’re new to
QSketchMetric.

3.1 Tutorial - Rendering your first parametric DXF file

Let’s learn by example.
In this tutorial you will render a parametric DXF file using the qsketchmetric.renderer.Renderer module.

We’ll assume you have QSketchMetric installed already.

First download the tutorial.dxf file from the QSketchMetric repository. It is an example of a parametric DXF file that
we will use in a tutorial.

To do so, open it and click Ctrl+S to save it to your computer. As a convention, we’ll assume you saved it in a file
called tutorial.dxf.

Now, create a new file called render.py and place it in the same directory as tutorial.dxf.

Open render.py in your favorite text editor and import the qsketchmetric.renderer.Renderer module as well
as the ezdxf.new() function:

from qsketchmetric.renderer import Renderer
from ezdxf import new
from ezdxf import units

The first one will be used to render the parametric DXF file, the second one to create output ezdxf.document.Drawing
and the third one to set the units of the output drawing.

Create an output ezdxf.document.Drawing object using ezdxf.filemanagement.new() module. Remember to
set the units of the output drawing to millimeters as the parametric DXF file defaults to meters.:

output_dxf = new()
output_dxf.units = units.MM

Before we will render tutorial.dxf let’s check it out in the QCAD Professional CAD software to see briefly what it
looks like (File -> Open). This is what you should see:

Note: To see how to parametrize a drawing, see Manual parametrization.

We can see it is a parametric drawing of a chalice. To render, it needs variable h that stands for height of the chalice.
Let’s set it to 50:

7

https://raw.githubusercontent.com/MadScrewdriver/qsketchmetric/main/docs/_static/DXF/tutorial.dxf
https://github.com/MadScrewdriver/qsketchmetric
https://ezdxf.readthedocs.io/en/stable/drawing/management.html#ezdxf.new
https://ezdxf.readthedocs.io/en/stable/drawing/drawing.html#ezdxf.document.Drawing
https://ezdxf.readthedocs.io/en/stable/drawing/drawing.html#ezdxf.document.Drawing
https://qcad.org/en/download

qsketchmetric, Release 1.7.1

Fig. 1: tutorial.dxf opened in QCAD Professional

input_variables = {'h': 50}

Now we are ready to roll. Let’s render the parametric DXF file:

renderer = Renderer('tutorial.dxf', output_dxf, input_variables)
renderer.render()

Finally, save the output drawing:

output_dxf.saveas('rendered_tutorial.dxf')

The whole code should look like this:

from qsketchmetric.renderer import Renderer
from ezdxf import new

output_dxf = new()
input_variables = {'h': 50}
renderer = Renderer('tutorial.dxf', output_dxf, input_variables)
renderer.render()
output_dxf.saveas('rendered_tutorial.dxf')

Now run the code:

python render.py

Finally open rendered_tutorial.dxf in QCAD Professional. This is what you should see:

As you can see, the parametric DXF file was rendered successfully and the chalice height is 50.

8 Chapter 3. Tutorials

qsketchmetric, Release 1.7.1

Fig. 2: rendered_tutorial.dxf opened in QCAD Professional

Congratulation you renderer your first parametric DXF file!

3.2 Tutorial - Manual parametrizing your first DXF file

Let’s learn by example.
In this tutorial, we will learn how to parametrize a DXF file.

We’ll assume you have QSketchMetric installed already as well as QCAD Professional

First download the tutorial_param.dxf file from the QSketchMetric repository. It is an example of a DXF file that we
will parametrize in this tutorial.

To do so, open it and click Ctrl+S to save it to your computer. As a convention, we’ll assume you saved it in a file
called tutorial_param.dxf.

First, let’s open the file in QCAD Professional. (File -> Open)

As you can see, it is a simple drawing of a chalice. With every entity placed on the CUTTING layer.

We would like to parametrize it depending on the given size of the chalice. We will call chalice height variable: h.

Let’s start by adding a MTEXT . entity to the drawing and placing it at the left of the chalice. (Draw -> Text) To the text
input field add the following text:

Available variables:

----- buld in -----

c: const
?: undefined

(continues on next page)

3.2. Tutorial - Manual parametrizing your first DXF file 9

https://qcad.org/en/download
https://raw.githubusercontent.com/MadScrewdriver/qsketchmetric/main/docs/_static/DXF/tutorial_param.dxf
https://github.com/MadScrewdriver/qsketchmetric

qsketchmetric, Release 1.7.1

(continued from previous page)

h: chalice_height

----- custom -----

Where:
• ‘—– buld in —–’: are the built-in variables it servers as a documentation for the user. We added h variable

to know what is the variable name for the chalice height.

• ‘—– custom —–’: are the helpers variables that we will add later.

The next step will be adding a new layer called VIRTUAL_LAYER (Layer -> Add Layer) and drawing LINE entities
on it. (Draw -> Line -> Line from 2 Points) With those lines join all the points of a chalice to each other to form a
cohesive graph.

• CIRCLE - by their center point

• LINES - by at lest one of their end points

• ARC - by their center point

After you are done, you should have something like this:

We are nearly finished. The last step is to add parameters to the drawing. But first, let’s make our job easier by defining
a few helper variables. In the — custom — section of the MTEXT entity add the following variables:

----- custom -----

chalice_foot_radius: h * 1/5
chalice_bowl_radius: h * 2/5
chalice_ornament_radius: h * 1/10

10 Chapter 3. Tutorials

qsketchmetric, Release 1.7.1

3.2. Tutorial - Manual parametrizing your first DXF file 11

qsketchmetric, Release 1.7.1

Chalice arc-bowl, arc-foot and circle-ornament radius’s are defined as a fraction of the chalice height. This way, if we
change the chalice height, the radius’s will change accordingly.

We did not define the chalice leg length because it will be calculated automatically by the renderer.

After adding the variables, everything should look like this:

Now we can add parameters to the drawing. To do so select the entities one by one and scroll down the Property
Editor to the Custom section. Click on the red plus button and add the parameter.

• Name must be: c.

• Value contains the expression describing the entity. According to this table below

Value Description
c (constant) Entity length will not change
? (undefined) Entity length will be calculated by the renderer. Only if there is other path to the

both end points of the line!
c/
h*2

(math expression) Entity length will be calculated from the math expression

Attention: Remember that our goal is to parametrize the drawing depending on the chalice height.

To parametrize the drawing depending on the chalice height, the Value for the virtual line on the right side of the
chalice must be h and for the chalice leg line must be ?. By doing so, we are telling the renderer to calculate the length
of the chalice leg line from two end points of the line.

Visual representation of the parametrized drawing:

12 Chapter 3. Tutorials

qsketchmetric, Release 1.7.1

Warning: It is just a visual representation of the parametrized drawing. It does not represent the actual look of
the parametrized drawing. Actual look of the parametrized drawing doesn’t change after the parametrization!

Now we can save the parametrized DXF file (File -> Save) and render it. Finished file should be simular to tutorial.dxf
file, that you can download from the QSketchMetric repository.

Lastly, we check if the parametrization is correct by validating it. To do so, follow the Validation your first DXF file
tutorial.

Congratulation you created your first parametric DXF file!

3.3 Tutorial - Semi-automatic parametrization of a DXF file

Let’s learn by example.
In this tutorial, we will learn how to semi-automatic parametrize a DXF file.

We’ll assume you have QSketchMetric installed already as well as QCAD Professional and have already done the
rendering tutorial as well as parametrization tutorial

First download the tutorial_param.dxf file from the QSketchMetric repository. It is an example of a DXF file that we
will parametrize in this tutorial. It is a simple drawing of a chalice. With every entity placed on the CUTTING layer.

To do so, open it and click Ctrl+S to save it to your computer. As a convention, we’ll assume you saved it in a file
called tutorial_param.dxf.

Let’s start by firing up command line and starting the python interpreter:

python

3.3. Tutorial - Semi-automatic parametrization of a DXF file 13

https://raw.githubusercontent.com/MadScrewdriver/qsketchmetric/main/docs/_static/DXF/tutorial.dxf
https://raw.githubusercontent.com/MadScrewdriver/qsketchmetric/main/docs/_static/DXF/tutorial.dxf
https://github.com/MadScrewdriver/qsketchmetric
https://qcad.org/en/download
https://raw.githubusercontent.com/MadScrewdriver/qsketchmetric/main/docs/_static/DXF/tutorial_param.dxf
https://github.com/MadScrewdriver/qsketchmetric

qsketchmetric, Release 1.7.1

Warning: Remember to activate your virtual environment if you are using one:

source .venv/bin/activate

Next we need to import the qsketchmetric.semiautomatic.SemiAutomaticParameterization module:

from qsketchmetric.semiautomatic import SemiAutomaticParameterization

Now define the path to the input file we downloaded earlier:

input_dxf_path = "tutorial_param.dxf"

For the output file path and default parameter we will use default settings.

Now we are ready to roll. Let’s parametrize the DXF file:

sap = SemiAutomaticParameterization(input_dxf_path)
sap.parameterize()

Parametrized file will be saved in the parametric directory, in the same directory as the input file.

Open the parametrized file in QCAD Professional, and edit the parameters.

Every entity parameter is now set to the default parameter. Let’s change their values.

To do so select the entities one by one and scroll down the Property Editor to the Custom section. Click on c
parameter to edit it.

Value contains the expression describing the entity. According to this table below:

14 Chapter 3. Tutorials

https://qcad.org/en/download

qsketchmetric, Release 1.7.1

Value Description
c (constant) Entity length will not change
? (undefined) Entity length will be calculated by the renderer. Only if there is other path to the

both end points of the line!
c*2/
5

(math expression) Entity length will be calculated from the math expression

You can change the value of the parameter to any of the above. For example, let’s change the value of the
chalice leg line to 2*c. This will make the leg line 2 times longer.

Lastly, we check if the parametrization is correct by validating it. To do so, follow the Validation your first DXF file
tutorial.

That is it! You have successfully parametrized a DXF file. As you can see semi-automatic parametrization is much
faster and easier than manual parametrization.

Congratulation!

3.4 Tutorial - Validation your first DXF file

Let’s learn by example.
In this tutorial, we will learn how to validate a parametrized DXF file.

We’ll assume you have QSketchMetric installed already as well as QCAD Professional

First (If you don’t have already from other tutorials) download the tutorial.dxf file from the QSketchMetric reposi-
tory. It is an example of a DXF file that we will validate in this tutorial.

To do so, open it and click Ctrl+S to save it to your computer. As a convention, we’ll assume you saved it in a file
called tutorial.dxf.

First, let’s open the file in QCAD Professional. (File -> Open)

3.4. Tutorial - Validation your first DXF file 15

https://qcad.org/en/download
https://raw.githubusercontent.com/MadScrewdriver/qsketchmetric/main/docs/_static/DXF/tutorial.dxf
https://github.com/MadScrewdriver/qsketchmetric
https://github.com/MadScrewdriver/qsketchmetric

qsketchmetric, Release 1.7.1

As you can see, it is a simple drawing of a chalice. It is parametrized depending on the chalice height. Changing the
chalice height h variable will render the drawing accordingly.

Let’s validate the drawing. To do so, open the QSketchMetric Validator and login using your GitHub account. It is as
simple as clicking the GitHub button. The first time you login, you will be asked to authorize the application to access
your GitHub account.

After logging in, you will see the following screen:

Click the choose a file button and select the tutorial.dxf file you saved earlier.

Next, click the Validate button. And what this! An error!
The error is telling us that the h variable is not defined. This is because the validator does not know what the h variable
is while calculating the chalice_foot_radius variable.

Download the debug report by clicking the Debug report button and open it in QCAD Professional.

We can see that every entity got greyed out accept of the MTEXT entity. It is because the MTEXT entity is the place
where the error occurred while calculating the chalice_foot_radius variable. Also the error message is displayed
in the right bottom corner of the drawing.

Let’s fix the error!

To do so, we need to define the h variable. Click the validate another file button and select the tutorial.dxf file again.
This time, before clicking the Validate button, click the set vars button. The modal window will appear.

Add new variable using the + symbol. In the name field, type h and in the value field, type 50.

Close the modal window and click the Validate button. A success!
Entities, Variables and Cohesion checks are all green and we are presented with a success message.

16 Chapter 3. Tutorials

https://qsketchmetricvalidator.eu.pythonanywhere.com/

qsketchmetric, Release 1.7.1

3.4. Tutorial - Validation your first DXF file 17

qsketchmetric, Release 1.7.1

Congratulation you validated your first parametric DXF file!

3.5 Tutorial - Rendering a point

Let’s learn by example.
In this tutorial, we will learn how to render a point using the qsketchmetric.renderer.Renderer module.

We’ll assume you have QSketchMetric installed already as well as QCAD Professional and have already done the
rendering tutorial as well as parametrization tutorial

First download the tutorial.dxf file from the QSketchMetric repository. It is an example of a parametric DXF file that
we will use in a tutorial.

To do so, open it and click Ctrl+S to save it to your computer. As a convention, we’ll assume you saved it in a file
called tutorial.dxf.

Open tutorial.dxf in QCAD Professional, the result should look like this:

Rendering a point is dead simple with QSketchMetric. All you need to do is to create a POINT entity on the VIR-
TUAL_LAYER. (Draw -> Point -> Single Point) The ``POINT`` must be connected to the other entities!
Next you need to add a parameter to the point. To do so select the point and scroll down the Property Editor to the
Custom section. Click on the red plus button and add the parameter.

• Name should be: name.

• Value should be: variable_name you desire.

variable_name will be returned by the renderer with new rendered coordination of the point.

Added point should look like this:

That is all! Now you can save the file and render it with qsketchmetric.renderer.Renderer.render() method:

from qsketchmetric.renderer import Renderer
from ezdxf import new
from ezdxf import units

(continues on next page)

18 Chapter 3. Tutorials

https://qcad.org/en/download
https://raw.githubusercontent.com/MadScrewdriver/qsketchmetric/main/docs/_static/DXF/tutorial.dxf
https://github.com/MadScrewdriver/qsketchmetric

qsketchmetric, Release 1.7.1

Fig. 3: tutorial.dxf opened in QCAD Professional

Fig. 4: Added point

3.5. Tutorial - Rendering a point 19

qsketchmetric, Release 1.7.1

(continued from previous page)

output_dxf = new()
output_dxf.units = units.MM
variables = {'h': 50}
renderer = Renderer('tutorial.dxf', output_dxf, variables)
variables = renderer.render()
print(variables)

output_dxf.saveas('rendered_tutorial.dxf')

tutorial.dxf will be rendered on to the output_dxf ezdxf.document.Drawing and rendered variable from the
VIRTUAL_LAYER will be contained in the variables dictionary with the following content:

{
"foot_point": (20, 10)

}

(20, 10) is the rendered coordinate of the point.

Congratulation you renderer your first point using :meth:`qsketchmetric.renderer.Renderer.render` method!

3.6 Tutorial - Rendering a custom line style

Let’s learn by example.
In this tutorial, we will learn how to render a custom lines style using the qsketchmetric.renderer.Renderer
module.

We’ll assume you have QSketchMetric installed already as well as QCAD Professional and have already done the
rendering tutorial as well as parametrization tutorial

First download the tutorial.dxf file from the QSketchMetric repository. It is an example of a parametric DXF file that
we will use in a tutorial.

To do so, open it and click Ctrl+S to save it to your computer. As a convention, we’ll assume you saved it in a file
called tutorial.dxf.

Open tutorial.dxf in QCAD Professional, the result should look like this:

As you can see, it is a simple drawing of a chalice. With every entity placed on the CUTTING layer.

Rendering a custom line style is easy with QSketchMetric. All you need to do is to add a parameter to the entities.
Select the entitie where you want a custom line format and scroll down the Property Editor to the Custom section.
Click on the red plus button and add the parameter.

• Name should be: line.

• Value should be a ezdxf custom complex line pattern format.

In our example, we will use a a line pattern that looks like this: — BOWL —- BOWL —. We will use it for the bowl of
the chalice. To do so, Value should be: A,2,-1,[“BOWL”,STANDARD,S=.5,U=0.0,X=-0.1,Y=-.05],-2.5

Where:
• A - every line pattern starts with A

• 2 - line length

• -1 - space length

20 Chapter 3. Tutorials

https://ezdxf.readthedocs.io/en/stable/drawing/drawing.html#ezdxf.document.Drawing
https://qcad.org/en/download
https://raw.githubusercontent.com/MadScrewdriver/qsketchmetric/main/docs/_static/DXF/tutorial.dxf
https://github.com/MadScrewdriver/qsketchmetric
https://ezdxf.readthedocs.io/en/stable/tutorials/linetypes.html#removing-linetypes

qsketchmetric, Release 1.7.1

Fig. 5: tutorial.dxf opened in QCAD Professional

• [“BOWL”,STANDARD,S=.5,U=0.0,X=-0.1,Y=-.05] - BOWL part definition

• -2.5 - space length after the BOWL part

Note: Remember to add a comma after every parameter and do not use whitespaces.

That is all! Now you can save the file and render it with qsketchmetric.renderer.Renderer.render() method:

from qsketchmetric.renderer import Renderer
from ezdxf import new
from ezdxf import units

output_dxf = new()
variables = {'h': 50}
output_dxf.units = units.MM
renderer = Renderer('tutorial.dxf', output_dxf, variables)
renderer.render()
output_dxf.saveas('rendered_custom_line_tutorial.dxf')

Note: Remember to make sure that the output and input DXF files are configured in the same units. That is why we
set the units of the output DXF file to MM.

Rendered file should look like this:

Congratulation you renderer your first custom line!

3.6. Tutorial - Rendering a custom line style 21

qsketchmetric, Release 1.7.1

Fig. 6: tutorial.dxf with added line parameter

Fig. 7: rendered_custom_line_tutorial.dxf opened in QCAD Professional

22 Chapter 3. Tutorials

CHAPTER

FOUR

HOW-TO GUIDES

How-to guides are recipes. They guide you through the steps involved in addressing key problems and use-cases. They
are more advanced than tutorials and assume some knowledge of how QSketchMetric works.

4.1 Manual parametrization

4.1.1 Supported DXF entities

QSketchMetric explicit supports the following DXF entities: LINE, CIRCLE, ARC, POINT, INSERT entities. Other
entities such as LWPOLYLINE, POLYLINE, SPLINE, ELLIPSE, MTEXT, TEXT etc. can be also parametrized, using the
INSERT entity.

4.1.2 What is needed?

• QCAD Professional is a commercial software, but it offers a free trial version. It is needed to embed the param-
eters into the DXF file. Community version of QCAD does not support this feature.

• A DXF file to parametrize.

4.1.3 Manual parametrization

1. Open the DXF file in QCAD Professional. (File -> Open)

2. Add new layer called VIRTUAL_LAYER (Layer -> Add Layer)

3. Add MTEXT entity containing names of the variables passed to the renderer and variables added during
parametrization. It can be placed anywhere. See MTEXT to get more information about the format of the entity.
(Draw -> Text)

4. Connect entities. Entities must be connected to each other.
• CIRCLES - by their center point

• LINES - by at lest one of their end points

• ARCS - by their center point

• POINTS - by their center point

• INSERTS - by their insertion point

To achieve this add LINE entities (Draw -> Line) on to the VIRTUAL_LAYER. Those lines will connect the
entities together and form one coherent graph. They won’t be rendered in the final DXF file.

23

https://qcad.org/en/download
https://pl.wikipedia.org/wiki/DXF

qsketchmetric, Release 1.7.1

Fig. 1: QCAD Professional with DXF file to parametrize opened

Fig. 2: QCAD Professional layer adding window

24 Chapter 4. How-to guides

qsketchmetric, Release 1.7.1

Fig. 3: QCAD Professional with MTEXT dialog window opened

Fig. 4: DXF drawing connected with lines

4.1. Manual parametrization 25

qsketchmetric, Release 1.7.1

5. Final step is to add parameters to the entities. To do so select the entity and scroll down the Property Editor
to the Custom section. Click on the red plus button and add the parameter.

• LINE, CIRCLE and ARC
– Name must be: c.

– Value contains the expression describing the entity. According to the table below.

Variables from the MTEXT entity can be used, as well as math expressions provided by this list.

There is an option to add optional line variable. This variables states the custom line style of the
entity. Value should be in a format of ezdxf complex line pattern format. See ezdxf documentation for
more information about the format. Value example: A,2,-1,[“BOWL”,STANDARD,S=.5,U=0.0,X=-
0.1,Y=-.05],-2.5

• INSERT

– Name must be: c.

– Value contains the expression describing width and height of the entity split by a @ sign. In
the format: width@height. Both width and height are math expressions (see above) where ? is
only allowed for the one of the dimensions. For example: c*3@? or ?@200*sqrt(20). For the ?
dimension the renderer will calculate the value to fit the aspect ratio of the entity.

Note: Entities on VIRTUAL_LAYER contained in INSERT entity will not be rendered but they will be
taken into account while calculating the width and height of the INSERT entity. This is useful to make
calculations easier.

For example: To parametrize a part of the ellipse, full ellipse on the VIRTUAL_LAYER can be drawn
on top. This way by parametrizing the full ellipse the part will be rendered according to the full ellipse
size. In many scenarios it is easier to parametrize.

• LWPOLILINE, POLYLINE, SPLINE, ELLIPSE, MTEXT etc.
– Those entities must be packed into INSERT entity and parametrized as described above.

• POINT

– Name must be: name.

– Value contains the name of the variable. This variable will be returned by the qsketchmetric.
renderer.Renderer.render() in a dictionary.

6. Validate the file. This can be done by using the QSketchMetric Validator. See Validating a parameterized DXF
file for more information.

4.2 Semi-automatic parametrization

The qsketchmetric.semiautomatic.SemiAutomaticParameterization module is used to semi-automatic pa-
rameterize a DXF file. By semi-automatic, it means that the user has to manually customize the parameters of each
entity after the automatic parameterization process. Process includes:

• Adding MTEXT entity.

• Adding VIRTUAL_LAYER layer.

• Adding default expression to each entity.

• Joining entities with virtual lines in to the one coherent graph.

26 Chapter 4. How-to guides

https://github.com/AxiaCore/py-expression-eval/#available-operators-constants-and-functions
https://ezdxf.readthedocs.io/en/stable/tutorials/linetypes.html#removing-linetypes
https://ezdxf.readthedocs.io/en/stable/tutorials/linetypes.html#removing-linetypes
https://qsketchmetricvalidator.eu.pythonanywhere.com/

qsketchmetric, Release 1.7.1

Fig. 5: LINE entity with parameters

1. Make sure entities that are not explicitly supported are packed in to an INSERT entity (block). If not, pack
them using QCAD Professional software. Otherwise, the entities will be deleted during the semi-automatic
parametrization process.

2. If don’t have already fire up a terminal and run python console:

$ python

3. Define the path to the DXF file to parametrize:

input_dxf_file = 'path/to/dxf/file.dxf'

4. (Optional) Define the path to the output parametrized DXF file.
Default is input_dxf_file with _param appended to the file name contained in the parametric directory:

output_dxf = 'path/to/output/parametrized_dxf/file.dxf'

5. (Optional) Define the expression that will be used to parametrize each entity. Default is c which
stand for current length. See allowed expressions on the manual parametrization page.:

expression = '?'

6. Parametrize the DXF file:

from qsketchmetric.semiautomatic import SemiAutomaticParameterization

input_dxf_file = 'path/to/dxf/file.dxf'
(continues on next page)

4.2. Semi-automatic parametrization 27

https://qcad.org/en/download

qsketchmetric, Release 1.7.1

(continued from previous page)

Optional
output_dxf = 'path/to/output/parametrized_dxf/file.dxf'
expression = '?'

sap = SemiAutomaticParameterization(input_dxf_file, default_value=expression,␣
→˓output_dxf_path=output_dxf)
sap.parametrize()

7. Open the parametrized file in QCAD Professional, and customize the parameters. Same as in the manual
parametrization process.

8. Validate the file. This can be done by using the QSketchMetric Validator. See Validating a parameterized DXF file
for more information.

4.3 Validating a parametrized DXF file

4.3.1 QSketchMetric Validator

To verify the proper parametrization of a DXF file, use the QSketchMetric Validator. It is a web application that allows
to upload DXF file and check if it is properly parametrized. In the event of an error, the app will provide full debug
report. Including place where the error occurred in the DXF file and the error message.

4.3.2 Validation process

1. Go to QSketchMetric Validator and login using your GitHub account. For widgets and fields explanation (for
example: tokens) see the Widgets section.

2. Upload a DXF file by clicking on the Choose a file button or drag and drop a file into the upload area.

28 Chapter 4. How-to guides

https://qcad.org/en/download
https://qsketchmetricvalidator.eu.pythonanywhere.com/
https://qsketchmetricvalidator.eu.pythonanywhere.com/
https://qsketchmetricvalidator.eu.pythonanywhere.com/

qsketchmetric, Release 1.7.1

3. Provide a variables needed for the parametrization. This are the variables on upon which the file is rendered. To
do so utilize the set vars button and add as many variables as needed.

Here the precision of the calculations can be set up as well. Default precision is 3 decimal places.

4. Click on the Validate button.

5. 1. If the file is properly parametrized, the app will display a message validating succeeded and the rendered
file will be available for download.

2. If the file is not properly parametrized, the app will display an error message and a debug report will be
available for download.

3. If the DXF file contains more entities than your user account allows, the app will display an error message
saying that the file contains more entities than the account allows. In this case, see the Increase entities
limit section.

4.3. Validating a parametrized DXF file 29

qsketchmetric, Release 1.7.1

4.3.3 Increase entities limit

Should your project require a higher entity count, kindly reach out to franciszek@lajszczak.dev . Please provide your
desired entity limit, your account username, and the number of validations (tokens) needed.

4.3.4 Widgets

• Choose a file - button that allows to choose a file from your computer.

• Validate - button that starts the validation process.

• Set vars - button that allows to set variables needed for the parametrization.

• Entities - field that displays the number of entities in a DXF file that can be validated with the account.

• Tokens - field that displays the number of validations that can be performed with current entity limit. After each
validation the number of tokens is decreased by one. When the number of tokens reaches zero, the user will
revert to the default entity limit of 20 entities.

• Increase entities limit - button that tooltip with a Increase entities limit section.

• Question mark - button that displays a tooltip with a help center.

• Logout - button that logs out the user.

4.4 Rendering a DXF file

0. Consider validating the DXF file before rendering it. This can be done by using the QSketchMetric Validator. See
<Validating a parameterized DXF file validator> for more information.

1. If don’t have already, create a ezdxf.document.Drawing object to which the renderer will render:

from ezdxf import new
output_dxf = new()

Warning: Remember to make sure that the output and input DXF files are configured in the same units. If not,
you can change the units of the output DXF file by:

output_dxf.units = units.MM

ezdxf by default uses meters as the unit of measurement.

2. (Optional) Define the variables that are described in ---- build in ----- section of MTEXT entity:

30 Chapter 4. How-to guides

mailto:franciszek@lajszczak.dev?subject=Increase%20entities%20limit&body=Username%3A%20%0ADesired%20entities%20limit%3A%20%0ANumber%20of%20tokens%3A%20
https://qsketchmetricvalidator.eu.pythonanywhere.com/
https://ezdxf.readthedocs.io/en/stable/drawing/drawing.html#ezdxf.document.Drawing
https://ezdxf.readthedocs.io/en/stable/

qsketchmetric, Release 1.7.1

variables = {'variable_name': 100}

3. Define the path to the parametrized DXF file:

path = 'how_to_guide.dxf'

4. (Optional) Define an offset for the rendered entities:

offset = (50, 50)

5. Render the file:

from ezdxf import new
output_dxf = new()
output_dxf.units = units.MM

path = 'how_to_guide.dxf'

Optional
variables = {'variable_name': 100}
offset = (50, 50)

renderer = Renderer(
path,
output_dxf,
variables=variables,
offset=offset
)

rendered_points = renderer.render()

Note: qsketchmetric.renderer.Renderer.render()method renders parametric DXF on to the output_dxf and
returns rendered points from VIRTUAL_LAYER as a Dictionary

4.4. Rendering a DXF file 31

qsketchmetric, Release 1.7.1

32 Chapter 4. How-to guides

CHAPTER

FIVE

EXPLANATION

Explanation guides discuss key topics and concepts of QSketchMetric.

5.1 Debug report

5.1.1 Error messages

If error is related to specific entity, debug report contains detailed error message with handle of problematic entity.

• Variables validation error - Error occurs in various situations when parsing variables. For example: wrong
variable name, wrong variable type, undefined variable etc.

Fig. 1: Variables error

• Entities validation error - Error occurs when validating entities. For example: wrong entity type, wrong
QCAD description, zero length line etc.

• Cohesion validation error - Error occurs when validating cohesion. By cohesion we mean that all entities are
connected to each other. Either directly or indirectly using VIRTUAL_LAYER. It is crucial that all entities form
one connected graph to be able to find relative position of all entities. For example: line parametrized with ‘?’
is not connected on both ends.

33

qsketchmetric, Release 1.7.1

Fig. 2: Entity error

Fig. 3: Cohesion error

34 Chapter 5. Explanation

qsketchmetric, Release 1.7.1

• Limit validation error - Error occurs when user exceeds his limit of entities. For example: user has limit of
100 entities and his drawing has 150 entities. In this case see Increase entities limit.

Fig. 4: Limit error

5.1.2 Dxf debug report

Debug raport itself is a DXF file. It contains all entities from input dxf file and additional information such as error
message in the bottom right corner of the report.

Every entity is grayed out accept problematic entity. Problematic entity is highlighted with signature color and is placed
on DEBUG layer.

In the case when more than one entity is problematic all those entities are placed on DEBUG layer and are highlighted
with signature color. For example: if there is cohesion error such as there are two separate graphs, both graphs are
highlighted with different color.

5.2 MTEXT

Entity MTEXT is used to store the variables passed to the renderer and variables added during parametrization. The
format of the text in the entity is as follows:

Available variables:

----- build in -----
c: const
?: undefined
<variable_name>: <short_description>

----- custom -----
<variable_name>: <variable_value>

5.2. MTEXT 35

qsketchmetric, Release 1.7.1

Variables in the ----- build in ----- in section are the variables that are passed to the renderer. They can be
added for better readability of parametrized DXF file. Custom variables can be also added to the ----- custom
----- section. Those variables might come in handy during the parametrization process - to simplify the expressions
describing the entities. During parametrization variables can be used from the ----- build in ----- section as
well as from the ----- custom ----- section.

Warning: Only ONE explicit MTEXT entity is allowed in the DXF file. If there is a need to add more MTEXT
entities they need to be packed into INSERT entity as a part of a block and then parametrized.

Warning: MTEXT entity must be in a exact format as described above. Otherwise the parametrization process
will fail.

5.3 VIRTUAL_LAYER

VIRTUAL_LAYER will not be rendered in the final DXF file. It is used to store the virtual entities, which are needed
to parametrize the DXF file. Virtual layer will contain LINES and POINTS entities.

• POINTS entities will be rendered and returned as a dict by qsketchmetric.renderer.Renderer.render()
method in a form of:

{
"variable name": (x, y)

}

36 Chapter 5. Explanation

qsketchmetric, Release 1.7.1

Fig. 5: QCAD Professional with MTEXT dialog window opened

5.3. VIRTUAL_LAYER 37

qsketchmetric, Release 1.7.1

where x and y are the new coordinates of the renderer point.

• LINES entities will be used to join entities together. To form one coherent graph. They will be parametrized but
not rendered. Used only to store the information about the relative position between entities.

38 Chapter 5. Explanation

CHAPTER

SIX

REFERENCE

Reference guides contain technical reference for all aspects of QSketchMetric’s machinery. They describe how it works
but assume that you have a basic understanding of key concepts.

6.1 Renderer

class qsketchmetric.renderer.Renderer(input_parametric_path, output_rendered_object, variables=None,
offset=(0, 0), accuracy=3)

Bases: object

Parameters
• input_parametric_path (Path) – Path to the parametric file intended for rendering.

• output_rendered_object (Drawing) – A pre-initialized ezdxf.document.Drawing
drawing object. You can initialize such an object using methods like ezdxf.readfile()
or ezdxf.new() By providing an already existing drawing, users can merge multiple visual
elements into a singular representation.

• variables (dict[str, float] | None) – (Optional) Supplementary constant vari-
ables that can enhance the mathematical representations used. Defaults to an empty dic-
tionary.

• offset (tuple[int, int]) – (Optional) Provides offsets for the parametric visualization.
Defaults to (0, 0).

• accuracy (int) – (Optional) The precision used for calculations, represented by the num-
ber of decimal places. Defaults to 3.

The Renderer class interprets parametric DXF files, transforming them into visual representations.

Warning: Remember to make sure that the output and input DXF files are configured in the same units

See also:
ezdxf Documentation - A comprehensive library to manage DXF drawings, allowing users to read, write, and
modify DXF content efficiently.

get_bb_dimensions(custom_msp=None)
Retrieve the bounding box dimensions of the output DXF.

This method calculates the width and height of the bounding box that encompasses all entities within the
given Model Space (MSP) or defaults to the output MSP if none is provided.

39

https://ezdxf.readthedocs.io/en/stable/drawing/drawing.html#ezdxf.document.Drawing
https://ezdxf.readthedocs.io/en/stable/drawing/drawing.html#ezdxf.document.Drawing
https://ezdxf.readthedocs.io/en/stable/

qsketchmetric, Release 1.7.1

Parameters
custom_msp – The Model Space to calculate bounding box dimensions for. Defaults to out-
put_msp.

Returns
A tuple containing the width and height of the bounding box.

Return type
tuple[float, float]

render()

The main method of the Renderer class. Transforms the input parametric DXF drawing and
produces a rendered output on the output DXF.

Returns
A dictionary containing rendered points marked in the parametric drawing.

Return type
dict[str, tuple[float, float]]

6.2 Semi-automatic parametrization

class qsketchmetric.semiautomatic.SemiAutomaticParameterization(input_dxf_path,
default_value='c',
output_dxf_path=None,
accuracy=3)

Bases: object

Parameters
• input_dxf_path (Path) – Path to the DXF file to be parameterized.

• default_value (str) – (Optional) Default expression describing the entities. Defaults to
“c”.

• output_dxf_path (Path | None) – (Optional) Path for the output parameterized DXF
file. If not provided, the output file will be saved in the parametric directory, in the same
directory as the input file. With the name input_file_name + _param.

• accuracy (int) – (Optional) The precision used for calculations, represented by the num-
ber of decimal places. Defaults to 3.

The SemiAutomaticParameterize class is used to semi-automatic parameterize a DXF file. By semi-
automatic, it means that the user has to manually customize the parameters of each entity after the automatic
parameterization process. Process includes:

• Adding MTEXT entity.

• Adding VIRTUAL_LAYER layer.

• Adding default expression to each entity.

• Joining entities with virtual lines in to the one coherent graph.

parametrize()

The main method of the SemiAutomaticParameterize class. Parametrizes the DXF file and saves it to
the output path.

40 Chapter 6. Reference

CHAPTER

SEVEN

GETTING HELP

If you have any questions about QSketchMetric or feature request, consider starting a discussion on the Issues page.
You can also contact the author directly via email at franciszek@lajszczak.dev.

Together we can resolve your problem!

41

qsketchmetric, Release 1.7.1

42 Chapter 7. Getting help

CHAPTER

EIGHT

HOW TO CONTRIBUTE

Thank you for investing your time in contributing to our project! Any contribution you make will be reflected on
QSketchMetric GitHub Page Hall of Fame . In this guide you will get an overview of the contribution workflow from
opening an issue, creating a PR, reviewing, and merging the PR.

8.1 Issues / Feature requests

8.1.1 Create a new issue

If you spot a problem with the package, you have a question or want to request a new feature, it’s a good idea to add it
as an issue. Search if an issue already exists. If a related issue doesn’t exist, you can open a new issue using a relevant
issue form.

8.1.2 Solve an issue

Scan through our existing issues to find one that interests you. You can narrow down the search using labels as filters.
See labels for more information. As a general rule, we don’t assign issues to anyone. If you find an issue to work on,
you are welcome to open a PR with a fix.

8.2 Make changes

1. Fork the repo so that you can make your changes without affecting the original project until you’re ready to merge
them.

2. Create a new virtual environment for the project and source it.

3. Install the project dependencies using:

pip install -r requirements-dev.txt

4. Create a working branch and start with your changes!

43

https://github.com/MadScrewdriver/qsketchmetric
https://github.com/MadScrewdriver/qsketchmetric/issues
https://github.com/MadScrewdriver/qsketchmetric/issues
https://github.com/MadScrewdriver/qsketchmetric/labels
https://docs.github.com/en/get-started/quickstart/fork-a-repo#fork-an-example-repository
https://virtualenv.pypa.io/en/latest/user_guide.html

qsketchmetric, Release 1.7.1

8.3 Tests

We use pytest for testing. You can run the tests using:

pytest

8.4 Commit your update

Commit the changes once you are happy with them. Don’t forget to self-review to speed up the review process. Here
are some tips for self-review:

• Confirm that you added tests for your code

• Confirm that you added documentation for your code

• Confirm that the changes meet the user experience and goals outlined in the issue description

• Review the changes for technical accuracy.

• Confirm that the changes are consistent with the project’s style and standards adherence to the mypy .

• If there are any failing checks in your PR, troubleshoot them until they’re all passing.

8.5 Pull request

When you’re finished with the changes, create a pull request, also known as a PR.

• Don’t forget to link PR to issue if you are solving one.

• We may ask for changes to be made before a PR can be merged. As you update your PR and apply changes, mark
each conversation as resolved.

• If you run into any merge issues, checkout this git tutorial to help you resolve merge conflicts and other issues.

8.6 Your PR is merged!

Congratulations! QSketchMetric develops thanks to people like you. Thank you for your contribution! Once your PR
is merged, your contributions will be publicly visible on the QSketchMetric GitHub Page Hall of Fame .

44 Chapter 8. How to contribute

https://docs.pytest.org/en/stable/
https://mypy-lang.org/
https://github.com/skills/resolve-merge-conflicts
https://github.com/MadScrewdriver/qsketchmetric

PYTHON MODULE INDEX

q
qsketchmetric.renderer, 39
qsketchmetric.semiautomatic, 40

45

qsketchmetric, Release 1.7.1

46 Python Module Index

INDEX

G
get_bb_dimensions() (qsketch-

metric.renderer.Renderer method), 39

M
module

qsketchmetric.renderer, 39
qsketchmetric.semiautomatic, 40

P
parametrize() (qsketch-

metric.semiautomatic.SemiAutomaticParameterization
method), 40

Q
qsketchmetric.renderer

module, 39
qsketchmetric.semiautomatic

module, 40

R
render() (qsketchmetric.renderer.Renderer method), 40
Renderer (class in qsketchmetric.renderer), 39

S
SemiAutomaticParameterization (class in qsketch-

metric.semiautomatic), 40

47

	Getting started
	Why QSketchMetric?
	What is DXF file?
	DXF file versions supported
	How the documentation is organized?

	Quick install guide
	Supported Python Versions
	Basic Installation

	Tutorials
	Tutorial - Rendering your first parametric DXF file
	Tutorial - Manual parametrizing your first DXF file
	Tutorial - Semi-automatic parametrization of a DXF file
	Tutorial - Validation your first DXF file
	Tutorial - Rendering a point
	Tutorial - Rendering a custom line style

	How-to guides
	Manual parametrization
	Supported DXF entities
	What is needed?
	Manual parametrization

	Semi-automatic parametrization
	Validating a parametrized DXF file
	QSketchMetric Validator
	Validation process
	Increase entities limit
	Widgets

	Rendering a DXF file

	Explanation
	Debug report
	Error messages
	Dxf debug report

	MTEXT
	VIRTUAL_LAYER

	Reference
	Renderer
	Semi-automatic parametrization

	Getting help
	How to contribute
	Issues / Feature requests
	Create a new issue
	Solve an issue

	Make changes
	Tests
	Commit your update
	Pull request
	Your PR is merged!

	Python Module Index
	Index

